Exercise 37

The table gives the height as time passes of a typical pine tree grown for lumber at a managed site.

Tree age (years)	14	21	28	35	42	49
Height (feet)	41	54	64	72	78	83

If H(t) is the height of the tree after t years, construct a table of estimated values for H' and sketch its graph.

Solution

H'(t) is the rate at which the height of the tree is increasing with respect to time (units of feet/year). To obtain the values of H'(t), calculate the slope of the secant line going through two adjacent t values. At t = 14, for example,

$$H'(t) = \frac{H(21) - H(14)}{21 - 14} = \frac{54 - 41}{7} \approx 1.86.$$

At t = 21, there are two secant lines.

$$H'(t) = \frac{H(21) - H(14)}{21 - 14} = \frac{54 - 41}{7} = \frac{13}{7} \approx 1.86$$
$$H'(t) = \frac{H(28) - H(21)}{28 - 21} = \frac{64 - 54}{7} = \frac{10}{7} \approx 1.43$$

At such times where there are two possible secant lines, take the average for the best estimate.

$$\frac{\frac{13}{7} + \frac{10}{7}}{2} = \frac{23}{14} \approx 1.64$$

Below is a table of estimated values for H'(t).

t	H(t)	H'(t)
14	41	1.86
21	54	1.64
28	64	1.29
35	72	1.00
42	78	0.79
49	83	0.71

Below is a graph of H' versus t.

It shows that a typical pine tree grows slower as it reaches maturity.