Exercise 37

The table gives the height as time passes of a typical pine tree grown for lumber at a managed site.

Tree age (years)	14	21	28	35	42	49
Height (feet)	41	54	64	72	78	83

Source: Arkansas Forestry Commission

If $H(t)$ is the height of the tree after t years, construct a table of estimated values for H^{\prime} and sketch its graph.

Solution

$H^{\prime}(t)$ is the rate at which the height of the tree is increasing with respect to time (units of feet/year). To obtain the values of $H^{\prime}(t)$, calculate the slope of the secant line going through two adjacent t values. At $t=14$, for example,

$$
H^{\prime}(t)=\frac{H(21)-H(14)}{21-14}=\frac{54-41}{7} \approx 1.86 .
$$

At $t=21$, there are two secant lines.

$$
\begin{aligned}
& H^{\prime}(t)=\frac{H(21)-H(14)}{21-14}=\frac{54-41}{7}=\frac{13}{7} \approx 1.86 \\
& H^{\prime}(t)=\frac{H(28)-H(21)}{28-21}=\frac{64-54}{7}=\frac{10}{7} \approx 1.43
\end{aligned}
$$

At such times where there are two possible secant lines, take the average for the best estimate.

$$
\frac{\frac{13}{7}+\frac{10}{7}}{2}=\frac{23}{14} \approx 1.64
$$

Below is a table of estimated values for $H^{\prime}(t)$.

t	$H(t)$	$H^{\prime}(t)$
14	41	1.86
21	54	1.64
28	64	1.29
35	72	1.00
42	78	0.79
49	83	0.71

Below is a graph of H^{\prime} versus t.

It shows that a typical pine tree grows slower as it reaches maturity.

